Improved Baseflow Forecasting

Thanks to my committee:

Dr. Gary S. Johnson, University of Idaho (Major Professor)

Committee Members

Dr. James R. Bartolino, USGS

Dr. Jerry Fairley, University of Idaho

Dr. Rob Van Kirk, Humboldt State University

Research Goal

 Develop and evaluate methods to improve spring discharge forecasts.

Thousand Springs

Presentation Organization

- Research Motivation
- Forecasting Methods
 - Analytical (JAWRA, 2010, Vol. 46, No. 6, Pgs: 1116-1132)
 - Statistical (manuscript to be submitted for review)
 - Numerical (manuscript to be submitted for review)
- Conclusions

Chapter 1. Analytical Approach

Boundary Value Problem Solution Process

Governing Equation

Horizontal flow in an unconfined, isotropic, homogeneous aquifer:

$$S_{y} \frac{\partial h}{\partial t} = K \left[\frac{\partial}{\partial x} \left(h \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(h \frac{\partial h}{\partial y} \right) \right] + w(x, y, t)$$

Established boundary and initial conditions

 Used Darcy's law to develop a general form of recharge/discharge equation for total discharge from aquifer

Method of Solution: Fourier series

Fourier Series for Aquifer Discharge

$$Q(t) = \pi \left[\frac{D}{L^2} \sum_{n=1}^{\infty} (2n-1) \left[\int_{0}^{t} \exp\left(\frac{-(2n-1)^2 \pi^2 D}{4L^2} (t-s)\right) f(s) ds \right] \sin\frac{(2n-1)\pi r}{2L} \right]$$

What do we put in for recharge?

- Use common forms of recharge:
 - 1. Instantaneous events (Type 1)
 - 2. Recharge that is periodic in time (Type 2)

Instantaneous Recharge

• Lag =
$$t_{\text{max}} = \frac{r^2}{6D}$$

• Attenuation =
$$Q_{\text{max}} \approx 0.925 \frac{VD}{r^2}$$

Periodic Recharge

• Phase shift (lag) =
$$\frac{r}{2\pi} \sqrt{\frac{\omega}{2D}}$$

Attenuation (ratio of discharge amplitude)

to recharge amplitude) =
$$\exp\left(-r\sqrt{\frac{\omega}{2D}}\right)$$

Distance to Recharge Source (KM)

Analytical Approach Conclusions

- Relationship between lag, attenuation and distance (aquifer time scale control)
- Short-term changes in aquifer stresses near the discharge location account for most of the annual and decadal-scale aquifer discharge variability

Are the relationships among lag time, attenuation, and distance between aquifer stresses and aquifer discharge evident in measured data?

Chapter 2. Statistical Approach

Response Variable

Predictor Variables

Variable

BLRiver

BWDiv

BWRiver

EΤ

MGDiv

NSDiv

Precip

Pump

Sprinkler

Stor

SWE

Statistical Methods

Predictors potentially lagged in time and averaged over several years

Optimum Lag and MAW

ARIMAX model

$$y(t) - y(t - 1) = \sum_{k=1}^{p} \beta_k(x_k(t) - x_k(t - 1)) + \varepsilon_t$$

 Spring Q is a combination of last year's spring Q plus a combination of exogenous predictors at an optimum Lag and MAW for each predictor

Statistical Methods

- Divided data into two sets:
 - 1. Calibration (1950 through 1999)
 - 2. Validation (2000 through 2010)
- Akaike's information criterion (AIC_c)

$$AIC_c = n[\log(\sigma^2) + 1 + \log(2\pi)] + 2K + \frac{2K(K+1)}{n-K-1}$$

Model-Based Inference

- Model Selection
- Multiple Working Hypotheses
- Strength of Evidence

Fit improves, but uncertainty increases

Candidate Models

	Predictor(s)										
Model	BWRiver	ET	MGDiv	NSDiv	Precip	Pump	Stor	SWE			
Α	•	•	•	•	•	•	•	•			
В	No predictors (null model, random walk)										
С	Temporal trend only (random walk with drift)										
D	•	•	•	•	•	•	•				
Е	•		•	•	•	•	•	•			
F	•	•	•	•	•	•		•			
G	•	•	•	•	•		•	•			
Н	•	•	•	•		•	•	•			
1	•		•	•							
J	•			•							
K	•		•								
L			•	•							
M	•		•	•				•			
N	•	•	•	•							
0	•		•	•			•				
Р	•		•	•		•					
Q	•		•	•	•						
R	•						•				
S	•	•									
U											
	•		•	•	•						

Model 1 Approach

 Use only historic data to forecast Spring Q (data available each April)

Comparing Models (AICc)

Model & Predictors	AICc	ΔΑΙСα	$ w_i $	$\sum w_i$
U: BWRiver,MGDiv,NSDiv,Precip,Stor,SWE	985.9	0.00	0.34	0.34
E: BWRiver,MGDiv,NSDiv,Precip,Pump,Stor,SWE	986.2	0.36	0.28	0.62
F: BWRiver,ET,MGDiv,NSDiv,Precip,Pump,SWE	988.1	2.26	0.11	0.73
A: BWRiver,ET,MGDiv,NSDiv,Precip,Pump,Stor,SWE	988.2	2.36	0.10	0.83
G: BWRiver,ET,MGDiv,NSDiv,Precip,Stor,SWE	988.3	2.42	0.10	0.94

Model 1

Model 2

- Recharge sources impact spring discharge in the same year the recharge occurs
 - Inclusion of diversion, streamflow, pumping, and ET variables for the upcoming water year

Top Models (AICc)

Model & Predictors	AICc	ΔΑΙС	w_i	$\sum w_i$
O: BWRiver,MGDiv,NSDiv,Stor	970.1	0.00	0.37	0.37
S: BWRiver,MGDiv,NSDiv,ET,Stor,SWE	972.3	2.20	0.12	0.49
R: BWRiver,MGDiv,NSDiv,Stor,SWE	972.5	2.46	0.11	0.60
D: BWRiver,MGDiv,NSDiv,ET,Precip,Pump,Stor	973.0	2.98	0.08	0.69
T: BWRiver, MGDiv, NSDiv, Pump, Stor, SWE	973.1	3.07	0.08	0.77
H: BWRiver, MGDiv, NSDiv, ET, Pump, Stor, SWE	973.5	3.43	0.07	0.83

Conclusions

- 1. Model 2 explained nearly twice as much variability in discharge
 - Analytical results (lag, attenuation, distance) are observed in recharge-discharge data (stresses close come out in the same year)
- 2. The model with the highest AIC weight included streamflow, two irrigation diversion variables, and "second tier" variables (Stor, SWE).
- 3. AIC_c model ranking is an effective way to evaluate the relative strength of predictors

Chapter 3. Numerical Approach

ESPAM 2.0

- Used to administer water rights (mitigation requirements, etc.)
- Single layer
- Monthly stress period
- Calibration period May 1980 through Oct.
 2008
- MODFLOW 2000
- Superposition version

Primary Spring Discharge Components

- Decay of spring discharge from initial head conditions
- 2. Contributions to spring discharge from future recharge and pumping events

SWSI and Irrigation Recharge

Source: NRCS (SWSI); IDWR MKMOD Summary (Calibration Run E120116A008)

Irrigation Recharge

Source: IDWR MKMOD Summary (Calibration Run E120116A008)

Irrigation Response Functions

Average ESPA Pumping

Source: IDWR MKMOD Summary (Calibration Run E120116A008)

Pumping Response Function

Recharge on Non-Irrigated Lands

Source: IDWR MKMOD Summary (Calibration Run E120116A008)

NIR Response Function

Forecast Tool

- Spreadsheet (Excel VBA coded)
- Combines the effects of starting heads and individual recharge components over time

Forecast Components

Forecast Components

Average Forecast

Forecast Evaluation

2013 Forecast

WONTHLY SPRING DISCHARGE FORECASTING TOOL USER INPUT FORECAST YEAR January 1 Snake River at Heise SWSI January 1 Big Wood SWSI 0.5

Conclusions

1. Analytical

 understand the relationship among lag, attenuation, and distance

2. Statistical

- consistent with analytical results
- Developed annual spring Q forecast (applied each April)

3. Numerical

Accurate monthly forecast (applied each January)

